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Abstract

We study a model of the atrioventricular node function

during atrial fibrillation (AF), for which the model param-

eters can be estimated from the ECG. The proposed model

is defined by parameters which characterize the arrival

rate of atrial impulses, the probability of an impulse choos-

ing either one of the two atrioventricular nodal pathways,

the refractory periods of these pathways, and the prolon-

gation of the refractory periods. The parameters are esti-

mated from the RR intervals using maximum likelihood es-

timation, except for the shorter refractory period which is

estimated from the RR interval Poincaré plot, and the mean

arrival rate of atrial impulses by the AF frequency esti-

mated from the ECG. The model was evaluated on 30-min

ECG segments from 36 AF patients. The results showed

that 88% of the segments can be accurately modeled when

the estimated probability density function (PDF) and an

empirical PDF were at least 80% in agreement.

1. Introduction

During atrial fibrillation (AF), the atrioventricular (AV)

node is continuously bombarded with atrial impulses. The

ventricular activity during AF is irregular and manifested

by shorter RR intervals than during normal sinus rhythm,

and is largely determined by AV nodal blocking of the

impulses. Electrophysiologic factors such as intrinsic re-

fractoriness of the AV node and concealed conduction in-

fluence the ventricular response [1]. The existence of

two dominant pathways through the AV node, each with

different electrophysiological properties, has been docu-

mented [2]. Even though these properties play a promi-

nent role in ventricular rate control, they are not routinely

evaluated in clinical practice.

Analysis of the ventricular response during AF has

largely been confined to phenomenological exploration to

better understand AV nodal electrophysiology, e.g., by

using techniques based on RR interval histograms and

Poincaré plots [3]. Although parameters extracted using

such methods can be useful, they do not come with a

physiological interpretation.

An alternative approach to study AV nodal characteris-

tics is through mathematical modeling. A number of mod-

els have been proposed, which consider the AV node as

a lumped structure whose behavior represents the tempo-

ral and spatial summation of the cellular electrical activ-

ity [4–8]. However, none of these models are particularly

well-suited for parameter estimation from the ECG. At-

tempts were made to determine the model parameters from

the RR series using an ad hoc procedure in [4], but the re-

sulting estimates could assume unphysiological values. In

other models, invasive information on atrial activity is cru-

cial for the parameter estimation procedure [5, 6]. The de-

tailed simulation models presented in [7, 8] are unsuitable

for estimation since a very large number of parameters are

embraced.

The aim of this paper is to study an AV node model

which accounts for important electrophysiological prop-

erties, but which still lends itself to ECG-based parame-

ter estimation. In contrast to the above-mentioned models,

the present one accounts for dual AV nodal conduction and

makes use of an AF rate which is inferred from the ECG.

The output of the method is a set of parameter estimates

which provides an electrophysiological characterization of

the AV node.

2. Methods

In the present model, the AV node is treated as a lumped

structure which accounts for concealed conduction, rela-

tive refractoriness, and dual AV nodal pathways. Atrial

impulses are assumed to arrive to the AV node according

to a Poisson process with mean arrival rate λ. Each ar-

riving impulse is suprathreshold, i.e., the impulse results

in ventricular activation unless blocked by a refractory AV

node. The probability of an atrial impulse passing through

the AV node depends on the time elapsed since the previ-

ous ventricular activation t.

The length of the refractory period is defined by a de-

terministic part τ and a stochastic part τp. The latter part

models prolongation due to concealed conduction and/or

relative refractoriness, and is assumed to be uniformly dis-

tributed in the interval [0, τmax
p ]. Hence, all atrial impulses
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arriving at the AV node before the end of the refractory

period τ are blocked, no impulses arriving after the end

of the maximally prolonged refractory period τ + τmax
p are

blocked, and the likelihood of an impulse to pass through

the AV node in [τ, τ + τmax
p ] is linearly increasing. The

deterministic part of the refractory period can assume two

values, τ1 or τ2 = τ1 + ∆τ (∆τ ≥ 0), which character-

ize the two pathways. The maximal prolongation τmax
p is

assumed to be identical for both pathways.

It is assumed that a ventricular activation immediately

follows the first non-blocked atrial impulse among those

reaching the AV node. Hence, ventricular activations occur

according to an inhomogeneous Poisson process and the

time intervals between consecutive ventricular activations

xm are independent. An expression for the joint probabil-

ity of an RR series can be derived [9],

px(x1, x2, . . . , xM ) =

M
∏

m=1

px(xm) (1)

=
M
∏

m=1

(αpx,1(xm) + (1 − α)px,2(xm)),

where α is the probability of an atrial impulse to take the

AV path with shorter refractory period, and px,1(xm) and

px,2(xm) are given by

px,i(x) =
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p .

(2)

2.1. Model parameter estimation

It is well-known that the property in (1) of statistically

independent time intervals is not fully valid for observed

RR intervals. In order to better fulfill this assumption, a

functional dependence of the refractory periods τi on the

previous RR interval is considered,

τ1,m = τmin
1

+ sτx′

m−1
, (3)

where x′

m denotes the m-th observed RR interval. The

parameters sτ and τmin
1

are estimated from slope and the

intercept of the lower envelope of the Poincaré plot, re-

spectively. It is assumed that sτ is identical for both τ1,m

and τ2,m.

With the availability of ŝτ , the observed RR intervals are

subjected to the following linear transformation,

xm = x′

m − ŝτx′

m−1
. (4)

The resulting series xm is a modified version of the ob-

served RR series for which the interdependence of succes-
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Figure 1. Block diagram of AV node model parameter

estimation.

sive RR intervals has been reduced, and thus the model

assumption in (1) becomes more valid.

The arrival rate λ is determined by the dominant AF

frequency which is derived from the ECG, and thus it is

estimated independently of the model parameters which

characterize ventricular activity. The atrial activity is ex-

tracted from the ECG using spatiotemporal QRST cancel-

lation [10], after which the AF frequency is tracked on a

short-term basis using a method based on a hidden Markov

model (HMM) [11]. An estimate of λ is given by the me-

dian value of the AF frequency estimates computed over

the analyzed ECG segment length.

The model parameters α,∆τ , and τmax
p are estimated

by jointly maximizing the log-likelihood function with re-

spect to θ =
[

α ∆τ τmax
p

]T
, i.e., the maximum likeli-

hood estimator (ML) is given by

θ̂ = arg max
θ

log px(x1, x2, . . . , xM |θ; λ̂, τ̂min
1

), (5)

where px is given by (1). Since no closed-form solution

could be found for θ̂, combined with the fact that the gradi-

ent is discontinuous, simulated annealing [12] is employed

to numerically optimize the log-likelihood function. The

optimization algorithm was initiated with 10 different ran-

domly chosen values for each estimation, and where the

results were found to differ, the θ̂ which yielded the maxi-

mum value of px(x1, x2, . . . , xM |θ; λ̂, τ̂min
1

) was chosen.

The block diagram in Fig. 1 illustrates the procedure em-

ployed for estimating the model parameters.

2.2. Evaluation

The model was evaluated on 36 Holter recordings from

patients with sustained and paroxysmal AF, available from

Physiobank [13]. The duration of the AF episodes ranged

from approximately 30 min to 25 h. RR intervals preced-

ing and following ectopic beats were excluded from fur-

ther analysis; ectopic beats were detected based on heart-

beat morphology. Whenever possible, the recordings were

divided into 30-min segments with 50% overlap, and the

model parameters were estimated in each segment.

Since the underlying PDF is unknown for ECG-derived

RR intervals, an empirical PDF, denoted p̃x(x), was de-
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termined by wavelet-based density estimation [14]. The

capability to model different RR series was evaluated in

terms of a percentage measure of fit U , defined by

U = 100 ·

(

1 −

∫

2

0

∣

∣

∣
px(x|θ̂; λ̂, τ̂1) − p̃x(x)

∣

∣

∣
dx

)

, (6)

where the upper integration limit reflects the fact that very

few RR intervals are longer than 2 s during AF. In this

study U > 80% is considered to be a sufficiently accurate

model fit. In addition to the Physiobank signals, ECGs

recorded before and during head-up tilt test (10 and 8 min

duration, respectively) were analyzed.

3. Results

Figure 2 shows the distribution of U among all 30-min

ECG segments; its mean value is 84.6±4.8 %. The pre-

defined threshold for an accurate model fit is fulfilled for

88% of the analyzed 30-min segments, i.e., 1754 out of

2004.
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Figure 2. Distribution of the measure of fit U for 2004

different 30-min ECG segments.

The trends of the estimated model parameters over 24 h

are displayed in Fig. 3(a)-(e), starting at time 21:00. For

this patient, the parameter trends are relatively stable over

the day. However, the α-trend exhibits a gradual increase

in the morning, reaching a peak value of 0.78 at time

10:15. This increase is reflected by a transition from longer

to shorter RR intervals to become more frequent. The

PDFs of two different 30-min segments are displayed in

Figs. 3(g) and (h).

Figures 4 and 5 display RR interval histograms and esti-

mated PDFs, obtained from two patients before and dur-

ing head-up tilt. These patients exhibit similar changes

in atrial activity and ventricular response when tilted: the

atrial rate λ increases, and the RR intervals are shortened

due to an increase in α and decreases in ∆τ and τmin
1

. This

finding suggests that the refractory period of both AV nodal

pathways decreases during tilt, the longer one more than

the shorter one. It also suggests that the probability for

impulses passing through the pathway with the shorter re-

fractory period increases.

4. Conclusions

A statistical model of AV nodal function during AF is

proposed, with parameters that characterize dual AV nodal

pathways, concealed conduction, and relative refractori-

ness. A maximum likelihood approach is devised for es-

timating the model parameters from an RR interval series.

The results from 36 Holter ECG recordings suggest that a

wide variety of RR interval distributions can be accurately

modeled; 88% of all 30-min segments were judged as ac-

curate. The resulting parameter estimates are potentially

useful for noninvasively assessing the influence of antiar-

rhythmic drugs on patients with AF.
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Figure 3. Trends of model parameter estimates from a

patient with sustained AF: (a) λ, (b) τmin
1

, (c) α, (d) ∆τ ,

(e) τmax
p , and (f) intensity plot of sequential RR interval

histograms. The histogram and the estimated PDF are dis-

played at the times indicated by (g) a circle (U = 86.8%.

λ̂ = 7.4 Hz, τ̂min
1

= 0.26 s, α̂ = 0.64, ∆̂τ = 0.21 s,

τ̂max
p =0.08 s), and (h) a triangle, respectively (U = 89.5%,

λ̂ = 7.2 Hz, τ̂min
1

= 0.33 s, α̂ = 0.31, ∆̂τ = 0.19 s,

τ̂max
p =0.14 s).
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Figure 4. Histogram of transformed RR intervals x and the

estimated model PDF from the same patient during (a) rest

(U = 84.8%, λ̂ = 6.6 Hz, τ̂min
1

= 0.31 s, α̂ = 0.54, ∆̂τ =
0.22 s, τ̂max

p =0.05 s), and (b) head-up tilt (U = 82.3%,

λ̂ = 6.9 Hz, τ̂min
1

= 0.26 s, α̂ = 0.84, ∆̂τ = 0.17 s,

τ̂max
p = 0.07 s).
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Figure 5. Histogram of transformed RR intervals x and the

estimated model PDF from the same patient during (a) rest

(U = 88.8%, λ̂ = 6.0 Hz, τ̂min
1

= 0.70 s, α̂ = 0.68, ∆̂τ =
0.42 s, τ̂max

p =0.15 s), and (b) head-up tilt (U = 93.2%,

λ̂ = 6.1 Hz, τ̂min
1

= 0.64 s, α̂ = 0.88, ∆̂τ = 0.30 s,

τ̂max
p = 0.25 s).
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