Evaluation of Restitution Slopes Using a Quasi-stationary Exercise Protocol

JM Starobin1, V Varadarajan1, VN Polotski2

1Joint School of Nanoscience and Nanotechnology, North Carolina Agricultural and Technical State University, University of North Carolina at Greensboro, NC, USA

2Frontline Robotics, QC, Canada

Abstract

Cardiac electrical restitution is an important tool for evaluating risk of cardiac arrhythmias. Restitution slopes are used to quantify the rates of QT and DI (diastolic) interval adaptation in response to abrupt changes in cardiac cycle or RR intervals. These slopes can be either measured experimentally using invasive stepwise pacing procedures or assessed clinically from surface ECG. However, acquiring restitution slopes from surface ECG recordings may be complicated due to the presence of significant variations in QT and DI intervals. In this paper, we suggest a novel signal processing method, which overcomes these difficulties by implementing quasi-stationary exercise testing with modulated beat-to-beat QT/DI interval variations.

1. Introduction

As the load changes in the course of exercise protocol the amplitude of high frequency QT/DI interval fluctuations becomes smaller than corresponding changes in low-frequency QT/DI interval trend. Such modulation suggests that the magnitudes of QT/DI intervals are practically constant during each load step and resemble dynamics of QT/DI intervals in response to invasive step-wise pacing. A typical example of such behavior demonstrates that in the course of a quasi-stationary exercise protocol QT and DI interval variations gradually decrease during step-wise changes in exercise load [1].

This property can be used to simplify quantification of QT and DI interval adaptation. Although restitution slopes can be easily determined using controlled step-wise pacing protocol in invasive experiments, it is difficult to analyze similar large variations in QT/DI intervals non-invasively since under these conditions surface ECG measurements are associated with significant exercise related interval detection errors. In this paper we describe a novel algorithm of measuring the restitution slopes from modulated fluctuations and trends using RR and QT interval data sets acquired from surface ECG during quasi-stationary exercise testing.

Cardiac restitution properties are characterized by three different types of QT-DI restitution slopes which are determined by responses to specific step-wise changes in RR intervals [2]. The first type is S1-S2 restitution which characterizes fast QT interval changes in response to abrupt deviations of DI intervals from one given steady state to another. The second type is a basic cycle length (BCL) restitution which reflects long term QT interval adaptation to its steady state at a new fixed value of RR interval. The third one is a steady-state restitution which is a functional relation between steady-state values of QT and DI intervals.

Experimental findings have shown that slopes of different restitution curves are linked to cardiac instabilities [2]. It has been also demonstrated that fitting computer models of cardiac electrical activity to restitution slopes may be instrumental in making predictions for the onset of cardiac instabilities [3, 4]. However, a majority of existing electrophysiological methods to acquire restitution slopes is based on invasive pacing which presents significant difficulties for clinical implementation of restitution analysis in primary care offices. Our algorithm overcomes this limitation by implementing a quasi-stationary exercise protocol and relies only on surface ECG measurements.

2. Methods

We resampled original QT and RR interval data sets at a sufficiently high frequency f_s in order to obtain equidistant discrete $QT_s(n)$ and $RR_s(n)$ sequences. The discrete form of the diastolic interval $DI_s(n)$ was computed as $DI_s(n) = RR_s(n) - QT_s(n)$. Fast fluctuations QT_f and DI_f were obtained by high pass filtering of QT_s and DI_s at a cut-off frequency f_h. Similarly, low frequency QT (QT_l) and DI (DI_l) interval trends were separated by low pass filtering at a cut-off frequency f_l (Fig. 1).

We implemented an adaptive least-mean square (LMS) algorithm to estimate QT interval fluctuations (QT_{lms}) that were physiologically related to DI. The input and output signals in the LMS algorithm were DI and QT fluctuations, respectively. By minimizing the mean square difference
between QT\(_f\) and QT\(_{lms}\), we determined the optimal parameters of the adaptive filter which allowed us to reduce uncorrelated QT\(_f\) noise. Other parameters of the algorithm were similar to those described in [5].

Using the output of the adaptive LMS algorithm we determined S1-S2 and BCL restitution dependencies. Firstly, we computed a moving average window cross correlation signal, CC\((n)\), between QT\(_{lms}\) and DI\(_f\) as

\[
CC(n) = \frac{1}{||QT_{lms}|| ||DI_f||} \sum_{j=n-p}^{n+p} QT_{lms}(j) DI_f(j) \tag{1}
\]

where \(p\) is the number of sample points in the moving window.

Secondly, using a threshold \(\eta\), we determined periods of exercise during which QT\(_{lms}\) and DI\(_f\) were either correlated (CC \(>\) \(\eta\)) or anti-correlated (CC \(<\) \(-\eta\)) for at least five consecutive RR intervals. Each correlated and anti-correlated strip were considered as S1-S2 and BCL restitution dependencies, respectively. In order to approximate corresponding restitution slopes we performed linear regression between corresponding values of QT\(_f\) and DI\(_f\) intervals within each of these strips. Local steady state values of QT interval and DI intervals were determined at the intersections of BCL regression lines and QT\(_f\)-DI\(_f\) trend.

3. Results

The algorithm was applied to QT/RR data sets collected during physiological exercise from seventeen normal volunteers. Exercise testing was performed in our laboratory using GE Case 8000 treadmill system. Each subject exercised on a treadmill with a pre-programmed quasi-stationary ramp-up/ramp-down exercise protocol. Speed and elevation were changed gradually in one-minute steps with 1 MET increments of exercise load. Using GE Workstation software (Version 1.8) we computed beat-to-beat 4-point median QT and RR intervals and exported them in ASCII format for post-processing. We evenly re-sampled these intervals at \(f_s = 7\) Hz using linear interpolation and computed DI\(_f\) as the difference between RR\(_f\) and QT\(_f\).

An example of RR and QT interval profiles recorded for one subject is shown in Figures 2 and 3, respectively. Interval trends were computed by filtering corresponding signals using a low pass filter at \(f_l = 0.008\) Hz. DI and QT fluctuations were separated from discrete signals DI\(_f\) and QT\(_f\) at a cut-off frequency \(f_h = 0.03\) Hz. As explained above, the estimates of QT\(_{lms}\) were computed from DI\(_f\) using the adaptive LMS algorithm.

The upper panel in Fig. 4 shows DI\(_f\) and QT\(_{lms}\) signals determined within a five minute period of exercise from 750 to 1050 seconds as depicted in Fig. 2. Correlation signal between these portions is shown in the lower panel of the same figure. This signal was computed using a six second moving average window (Eq. 1, \(p = 21\)). Strips of either correlated or anti-correlated fluctuations were determined using a threshold of \(\eta = 0.8\).

![Figure 1. Frequency spectrum of an RR signal. Frequencies to the left of the first dashed line constitute the trend \((f < f_l)\). Frequencies to the right of the second dashed line constitute the fluctuations \((f > f_h)\).](image)

![Figure 2. Evenly sampled RR signal (gray) and corresponding trend RR\(_f\) (black). Duration of the test for this example is 25 minutes incuding the pre-test resting period of 9 minutes. Dotted vertical lines delineate 5 one-minute stages of exercise used to compute restitution slopes.](image)

![Figure 5 shows a set of S1-S2 (S\(_{S1-S2}\)) and BCL (S\(_{BCL}\)) restitution slopes determined for the stages of exercise depicted in Fig. 2. The steady state restitution curve is traced by the QT\(_f\)-DI\(_f\) trend (dashed line) which connects steady state points (black diamonds) located at intersections with BCL regression lines shown in black. S1-S2 restitution slopes are depicted by gray regression lines.](image)

778
Circular markers correspond to the actual values of QT and DI intervals.

Figure 3. Evenly sampled QT_s signal (gray) and corresponding trend QT_t (black).

Figure 4. Portions of DI_f (black), QT_{ims} (gray) are shown in the upper panel. Correlation signal CC for the same portions is shown in lower panel. From left-to-right, dotted vertical lines mark beginnings of correlation strips and solid vertical lines denote the ends of the same strips.

Restitution slopes S_{S1-S2} and S_{BCL} were computed for all subjects at every stage of exercise protocol. A linear regression analysis demonstrated that higher heart rates (HR) were associated with higher magnitudes of S_{S1-S2} and $|S_{BCL}|$ slopes (Table 1). This observation was similar to that reported in [6]. We also found that there was a categorical separation of $|S_{BCL}|$ based on a target heart rate of 100 BPM. Values of $|S_{BCL}|$ were higher for heart rates exceeding this target (Table 2).

Table 1. Association between restitution slopes and HR

| Slope Y | S_{S1-S2} and $|S_{BCL}|$ |
|-----------|-----------------------------|
| Number of sample points in all subjects | 184 |
| Regression equation | $y = -0.08 + 0.0045 \times HR$ |
| Significance level | $P = 0.016$ |

4. Conclusions

In this paper, we introduced and implemented a novel non-invasive method for acquiring cardiac restitution slopes from surface ECG data recordings. We confirmed that slopes of different restitution components depend on heart rate and may be considered as an important modality in the evaluation of risk of arrhythmic events. Our algorithm can be easily integrated into existing exercise ECG devices to enhance methods of ambulatory monitoring of stability of cardiac rhythms.

Acknowledgements

We want to thank Wanda krassowska Neu from Duke University and Wayne Cascio from East Carolina University for their critical assistance and continued support of our research. We would also like to thank Willi Kaiser and Ian Rowlandson from GE Healthcare Clinical Systems.
Table 2. Group-wise separation of $|S_{BCL}|$ for target HR of 100 BPM

<table>
<thead>
<tr>
<th>S_{BCL}</th>
<th>$HR < 100$ BPM</th>
<th>$HR > 100$ BPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of sample points in all subjects</td>
<td>41</td>
<td>78</td>
</tr>
<tr>
<td>95% CI of mean</td>
<td>0.26 to 0.43</td>
<td>0.38 to 0.55</td>
</tr>
<tr>
<td>T-test</td>
<td>$P = 0.048$</td>
<td></td>
</tr>
</tbody>
</table>

for their interest in our work and providing us with a customized GE Workstation research software for our study.

References

Address for correspondence:

Starobin J. M.
University of North Carolina at Greensboro
Greensboro, NC
jmstarob@uncg.edu