Dynamic Properties of QT Intervals

J Halamek, P Jurak, V Vondra, J Lipoldova, P Leinveber, M Plachy, P Frana, T Kara

1Institute of Scientific Instruments of the ASCR, Brno, Czech Republic
2St Anne's University Hospital, Brno, Czech Republic

Abstract

Five dynamic models of QT/RR coupling are tested on measurements of tilt table test at 19 healthy individuals. RMS of error signal (difference between measured and computed QT) and correlation coefficient (R) between error signal and RR are analyzed. Four models were based on weighted average of RR intervals - constant weighting, exponential weighting with linear dependency and nonlinear dependency and the new model given by exponential weighting, linear dependency and direct coupling with RR – MDCEXP. The fifth model was based on transfer function - MTRF. According to both parameters, RMS (P<0.001), R (P<10^{-7}) MDCEXP and MTRF are the best. Between MDCEXP and MTRF does not exist significant differences.

1. Introduction

Cardiac repolarization and depolarization is represented by the QT interval on the surface electrocardiogram. Understanding and defining the static and dynamic properties of QT are important tools in clinical practice and during drug testing [1-3]. QT interval for a given heart rate depends upon both the rate and the direction of the RR change. This dynamic dependency limits presently used QT analysis, but on the other hand represents important clinical information [4, 5]. The proper QT analysis should be based on a QT/RR coupling model which has a minimal number of parameters but effectively describes the static as well as the dynamic properties of QT/RR coupling, in particular the QT behavior after a sudden change of heart rate. Two backgrounds were used to describe QT/RR coupling: i) The models based on weighted averages of RR intervals preceding the qti(i) interval [6,7]; ii) The model based on low order transfer function [8,9]. The models will be compared and discussed.

2. Methods

2.1. Models based on weighted averages of RR intervals

The QT dependency on filtered RR (RRf) by FIR filter is assumed at these models. The RRf is given by:

\[ rr(i) = \sum_{j=-Ne+1}^{0} w(j) \times rr(i+j) \] where Ne is the number of weighting coefficients w(j).

The weighting coefficients may be constant, \( w(j) = 1/Ne \) or they may have the exponential shape \[ w(j) = K \times \lambda \times (1-\lambda)^{-j}, \] where K is a normalization constant, given so that \( \sum_{j=-N+1}^{0} w(j) = 1 \) and \( \lambda \) is a constant dependent on Ne:

\[ \lambda = \frac{2}{1+Ne}. \] The linear or nonlinear dependency [6,7] is assumed between RRf and computed QT:

\[ QTm = \beta + \alpha \times RRf \] or \[ QTm = \beta + \alpha \times RRf^{\gamma}. \]

Where \( \alpha, \beta \) and \( \gamma \) are fitted parameters together with Ne.

Four different types of models were tested:

a) Constant weighting, linear dependency – MSUM
b) Exponential weighting, linear dependency – MEXP
c) Exponential weighting, nonlinear dependency – MEXP_NONL
d) Exponential weighting, linear dependency between RRf and QTm, but with additive direct coupling between RR and QTm – MDCEXP

MDCEXP has not been published yet it is the extension of weighting models according to measured [10, 11] or computed [8, 9] shape of the step response. The computed QT \((QTm)\) at this model is given by:

\[ QTm = \beta + \alpha \times RRf + \gamma \times RR, \] where \( RRf \) is filtered RR like at the model MEXP and fitted parameters are: \( \alpha, \beta, \gamma \) and Ne.

2.2. Model based on transfer function

We have analyzed the order of the transfer function between RR and QT in [8] and the optimal transfer
function is:

\[ H_{QTx,RR}(z) = \frac{b_2 z^{-1} + b_3 z^{-2}}{1 + a_1 z^{-1}} \]

Computed QT with zero mean level (QTxm) is given by recursive relation:

\[ qtxm(i) = b_2 rrx(i-1) + b_3 rrx(i-2) - a_1 qtxm(i-1) \]

where \( rrx(i), qtx(i), qtxm(i) \) are i-th intervals of corresponding variables (RRx, QTx QTxm) with zero-mean level, i.e. \( RRx=RR\text{-mean}(RR), QTx=QT\text{-mean}(QT), QTm=QTxm+\text{mean}(QT) \). Fitted parameters are \( a_1, b_2, b_3 \).

The transfer function model (MTRF) consists of 3 numerical parameters \([a_1, b_2, b_3]\), that are used for computing QT parameters of physiological significance [8], described by the step response:

a) GainL - gain of QT/RR coupling for low variability of RR. It corresponds to the QT steady state change at the unit change of RR;
b) GainF - gain for fast variability of RR, it is the amplitude of QT change immediately after the unit change of RR;
c) \( \tau \) - the delay after which the step response has achieved 90% of the change needed to attain the new steady state value.

The QTc and QT variability independent of RR are also computed from numerical parameters.

### 2.3. Analyzed data

The healthy volunteers with no sign of heart disease (14 men, 5 women), underwent a tilt table test containing 3 stages - supine for 10 min, tilted for 10 min and supine again for 5 min. The average age was 42 ± 17 years (range: 23-72 years). The ECG was recorded with a 3 lead bedside system, model 90308, SpaceLabs, Inc., Redmond, WA, USA. The analog signals were sampled at 500 Hz. The signal with the maximal T wave was analyzed with our custom-designed software ScopeWin to obtain continuous series of RR and QT intervals. The QT interval duration was determined from the onset of the QRS wave to the end of the T wave, defined as the crossing between the isoelectric line and the tangent to the descending T wave. A semiautomatic method of QT detection was used. The results were visually reviewed and manually corrected in case of false automatic detection. If there was a doubt about the proper detection or if the accurate detection was not possible, the ECG part was marked as no detectable QT intervals.

### 3. Results

Two basic parameters were analyzed:

i) Root mean square (RMS) of error signal, i.e. of difference between measured and computed QT;

ii) The Pearson correlation coefficient (R) between error signal and RR intervals.

The results are in Tab. 1. The distribution of RMS over all subjects for different models is on Fig. 1. RMS level differs significantly over the subjects and the differences between the models are also presented. The RMS differences relative to MTRF model are on Fig. 2a and the differences relative to MEXP model are on Fig. 2b.

The Scheffé’s method was used for the multiple comparisons of models. Statistical significance exists (P<0.001) at RMS among MDCEXP or MTRF versus MEXP or MEXP_NONL or MSUM. Statistical significance does not exist between MDCEXP versus MTRF and MEXP versus MEXP_NONL. Statistical significance exists (P<10^{-7}) in correlation coefficient among MDCEXP or MTRF versus MEXP or MEXP_NONL or MSUM.

#### Table 1. Mean level and standard deviation of RMS and Pearson correlation coefficient (R) over all subjects.

<table>
<thead>
<tr>
<th>Model</th>
<th>RMS [ms]</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSUM</td>
<td>4.46±1.15</td>
<td>0.27±0.13</td>
</tr>
<tr>
<td>MEXP</td>
<td>4.18±1.08</td>
<td>0.28±0.13</td>
</tr>
<tr>
<td>MEXP_NONL</td>
<td>4.14±1.05</td>
<td>0.27±0.13</td>
</tr>
<tr>
<td>MDCEXP</td>
<td>3.77±1.03</td>
<td>0.01±0.01</td>
</tr>
</tbody>
</table>

![Figure 1. The distribution of RMS over all subjects for different models.](image)

The step responses for the different models of one subject are on Fig. 3.

### 4. Discussion and conclusions

The models MEXP, MEXP_NONL and MSUM have significantly higher R and RMS than models MDCEXP...
4. Limitations

The mathematical analysis and the models comparison are simple and clear. The clinical application has following limitations:

a) The analyzed data must be sufficiently long (20 min or more) with sufficient excitation of RR; otherwise the analyzed parameters are inaccurate. The excitation of RR must be defined, the QT parameters are not only subject specific but also excitation specific [1, 8]. The evaluation of parameters contribution may be done when the large set of measurements in heart disease patients and drugs measurements exists. The possible way may be an ECG international database as THEW [http://thew-project.org/index.htm].

b) The RR intervals must represent the continuous chain, without missing beats. The majority of QT intervals must be detected. Regarding the quality of the ECG data, this process may still present the problem [Computers in Cardiology Challenge 2006: QT Interval Measurement].

c) The QT duration and its dynamic properties are
analyzed in this article only; this QT behavior description has been tried to be solved by many for nearly one century already. Some other important clinical information may be given for example by the shape of T wave [13].

Acknowledgements

The work was supported by the Grant No. 102/08/1129 of the Grant Agency of the Czech Republic and by the grant No. ME09050 of the Ministry of the Education of the Czech Republic

References


Address for correspondence

Josef Halamek
Institute of Scientific Instruments of the ASCR
Kralovopolska 147
612 64 Brno
Czech Republic
josef@isibrno.cz