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Abstract

Removing cardiopulmonary resuscitation (CPR) related

artifacts from human ventricular fibrillation (VF) ECG

signals would provide the possibility to continuously detect

rhythm changes and estimate the probability of defibrilla-

tion success. This would avoid ”hands-off” analysis times

which diminish the cardiac perfusion and thus deteriorate

the chance for a successful defibrillation attempt.

Our approach consists in estimating the CPR-part of

a corrupted signal by an adaptive regression on lagged

copies of a reference signal which correlate with the CPR

artifact signal. The algorithm is based on a state-space

model and the corresponding Kalman recursions. The pre-

liminary evaluation based on a small pool of artifact-free

VF and asystole CPR data outperform comparable pre-

vious studies. In comparison with ordinary least-squares

(OLS) regression the proposed algorithm shows improve-

ments for low SNR corrupted signals and yields better es-

timates of the mean frequency of the true VF ECG signal.

1. Introduction

The international guidelines 2005 emphasize high qual-

ity CPR [1, 2]: Rescuers should push hard, push fast, allow

full chest recoil, minimize interruptions in compressions,

and defibrillate promptly when appropriate. During CPR,

however, chest compressions and ventilations cause arti-

facts in the ECG. In order that the rhythm detection algo-

rithms of automated external defibrillators work properly,

the international guidelines prescribe a so-called “hands-

off interval” for the time of analysis. During this period,

CPR is stopped and the ECG signal is thus artifact free.

However, as a consequence of this, myocardial blood flow

drops and both the success of a subsequent defibrillation

attempt [3] and the probability of success [4, 5] decrease.

Thus, it would be desirable to remove CPR artifacts from

the ECG signal continuously during CPR. Furthermore,

in the case of VF, CPR removal algorithms would allow

for continuous monitoring of the myocardial metabolism

of the heart through parameters derived from the artifact

cleaned ECG signal [6]. CPR artifact removal is thus a

crucial step towards diagnostic based defibrillation and has

the potential of dramatically improving the survival rate of

cardiac arrest patients. The international guidelines there-

fore encourage defibrillation manufacturers to develop de-

fibrillators that are capable of analyzing the heart rhythm

during uninterrupted chest compressions [2].

The human heart fibrillates at frequencies that overlap

with the characteristic frequencies of CPR artifacts [7].

Furthermore, in real life situations, the rates and ampli-

tudes of chest compressions and ventilations, and there-

fore the shape of the CPR ECG artifacts can change in the

course of time. Thus, CPR artifact removal is a delicate

signal processing problem and needs sophisticated adap-

tive algorithms.

In contrast to the large amount of literature about algo-

rithms to detect and analyze VF signals [8, 6], there are

surprisingly only few and recent publications addressing

the problem of removing CPR artifacts: Ruiz et al. [9] use

Kalman filters assuming that the CPR artifact as well as

the VF signal can be modeled by sinusoidal functions of

known angular frequencies. Klotz et al. [10] propose a

methodology based on time-frequency methods and local

coherent line removal. The Norwegian research group of

Eftestol et al. [11, 12, 13] apply an adaptive filtering ap-

proach using reference signals (thoracic impedance, com-

pression depth, etc.), which correlate with the CPR artifact

signal. Rheinberger et. al. [14] propose a seasonal state-

space model for the CPR signal.

This study enhances a state-space model of adaptive re-

gression on lagged copies of a reference signal presented

in [15].
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2. Methods

2.1. Data and cross-validation

A learning data set and a different test data set of CPR

corrupted signals are used, first to optimize some parame-

ters of the algorithms and then to evaluate the optimal al-

gorithms. Each data set consists of seven porcine asystole

ECG signals c during CPR and seven human artifact-free

VF ECG signals v which are added pairwise at signal-to-

noise ratios

SNR = 10 · log10

(

Var(v)

Var(c)

)

.

of -10, -5, 0, 5, and 10 dB. Each CPR artifact recording

includes an arterial blood pressure signal, lagged copies of

which are used as reference signals, i.e., regressors in the

regression models. All signals have a length of 10 seconds.

The human ECG-data were collected using a Welch Allyn

PIC 50 defibrillator.

2.2. Preprocessing

The reference signal is band-pass filtered between 0.1

and 15 Hz, detrended and normalized to standard deviation

one. For the purpose of CPR artifact removal by means of

our models, it suffices to work at a sampling frequency

of approx. 40 Hz, which usually covers the frequencies

contained in the CPR artifact signal. This is because our

models estimate the CPR artifact signal and handle the VF

part as residuals.

2.3. Models

In many cases it is appropriate not only to regress on

one reference signal, which was recorded synchronously

with the CPR corrupted ECG signal, but also to regress on

lagged copies of the reference signal, cf. Figure 2.

2.3.1. OLS regression models

Let {yt}t=1,...,T denote the observations of a CPR cor-

rupted ECG signal y = v+c and (Rt,k)k=1,...,M
t=1,...,T the matrix

of M lagged copies of the reference signal at the T sam-

pling time points. OLS corresponds to finding a column

vector β̂ ∈ R
M , such that the Euclidean norm ||y − Rβ̂||

is minimal for all β ∈ R
M . The OLS estimate ŷ = Rβ̂

is an estimate of the CPR part of a corrupted ECG signal,

whereas the residuals y − ŷ are an estimate of the artifact

removed VF ECG signal.

We considered models differing in the sampling fre-

quency f , the time interval δ between two adjacent lagged

copies of the reference signal and the minimal and maxi-

mal lag times lmin and lmax.

Figures 1 and 2 show the result of an OLS regression on

lagged copies of the arterial blood pressure signal. Neg-
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Figure 1. Results of an OLS regression of a CPR corrupted

VF ECG signal on lagged copies of the arterial blood pres-

sure signal showing the true and estimated CPR and VF

part. The regression coefficients are plotted in Figure 2.

ative lags (shift towards the past) and positive lags (shift

towards the future) are used. In both directions the OLS

regression coefficients are non-zero. Thus also future parts

of the reference signal can be useful for estimating the CPR

artifact part of a corrupted signal. This fact is not a hin-

drance for practical on-line application as it leads only to a

short time delay.

2.3.2. State-Space models

As already pointed out, the coupling between the ECG

and chest compressions as well as the shape of the CPR

ECG artifacts can change in the course of time. An adap-

tive regression model can handle these features. We pro-

pose a state-space regression model - called ALR (Adap-

tive Lagged Regression) - whose states are time-varying

regression coefficients and whose observations are the

CPR corrupted ECG signal. This is a generalization of the

above OLS model having constant coefficients. The ob-

servation equation reads Yt = GtXt + Wt, where Gt =
(Rt,1, . . . , Rt,M ), and Wt is observation noise, which

models the artifact removed ECG signal and has variance

σ2
w. The state equation is given by Xt+1 = FtXt + Vt,

where each state transition matrix Ft is the M × M iden-

tity matrix. The state noise vector Vt has covariance ma-

trix Q. The case Q = 0 reproduces the OLS regression

model, since the regression coefficients do not change in

the course of time. A state noise covariance matrix Q 6= 0
allows for a dynamic evolution of the states, i.e., for adap-
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Figure 2. The CPR corrupted VF ECG signal as the sum of

a CPR and a VF part, lagged copies of the reference signal

and OLS regression coefficients corresponding to Figure

1. A lag of e.g. -0.15 seconds means that the original

reference signal is shifted 0.15 seconds towards the past,

in other words, the reference signal values of 0.15 seconds

ahead are used.

tive regression coefficients. The OLS regression coeffi-

cients were used as initial state and the initial error covari-

ance matrix was computed using the estimator statistics of

the OLS regression coefficients. We set Q = αR2||y||2,

where the constant α was found by optimization on the

learning data set and R2 denotes the coefficient of deter-

mination of the OLS regression. As the Kalman recursions

only depend on the ratio Q/σ2
w, σw was set to one. The

Kalman fixed-point smoother recursions reaching one sec-

ond into the future were used.

2.4. Postprocessing and optimization

In order to get an estimate v̂ of the VF part (including as

much frequencies as possible), the model estimate of c was

up-sampled again, yielding ĉ, and subsequently subtracted

from the CPR+VF mixture, i.e., v̂ = y − ĉ. The restored

SNR, defined as

rSNR = 10 · log10

(

Var(v)

Var(v − v̂)

)

,

and the difference in mean frequency (MF) of v and its es-

timate ∆(MF) = MFv − MFv̂ were computed. First, the

rSNR-optimal OLS model parameters (f, δ, lmin, lmax)
were searched by a coarse grid search. Using these val-

ues the rSNR-optimal α value for the ALR model was

searched by a coarse grid search.

3. Results

For each SNR the rSNR and ∆(MF) values were com-

puted for all signals in the test data set using the rSNR-

optimal model parameters, cf. Figures 3 and 4. All mod-
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Figure 3. Evaluation results: rSNR values (mean ± std)

for the two models depending on the SNR of the signal

mixture.

els underestimate the VF mean frequency by up to approx.

1.5 Hz. For low SNR corrupted signals the ALR model

exceeds the OLS regression model, whereas for high SNR

corrupted signals the ALR model performs comparably or

slightly worse than the OLS regression model.

4. Discussion and conclusions

Our approach consists in estimating the CPR-part of a

corrupted signal by adaptive regression on lagged copies

of a reference signal which correlate with the CPR artifact

signal. It allows for stochastically changing regression co-

efficients.

The evaluation based on a small pool of human artifact-

free VF and porcine asystole CPR data outperforms com-

parable previous studies with respect to rSNR [12, 9, 15].

In comparison with OLS regression the proposed algo-

rithm shows, for low SNR corrupted signals, rSNR im-
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Figure 4. Evaluation results: ∆(MF) values (mean ± std)

for the two models depending on the SNR of the signal

mixture. The MF values were computed in the frequency

range [0.1 Hz, 50 Hz].

provements and yields better estimates of the mean fre-

quency of the true VF ECG signal. Thus, the ALR model

presents an improvement compared to the non-adaptive

OLS model for the purpose of CPR artifact removal from

VF ECG signals. This holds, in particular, because we op-

timized only one parameter (α) of the ALR model using

the fixed OLS-optimal values for (f, δ, lmin, lmax), which

was done for computational reasons.

Besides the limited optimization procedures applied, the

results are mainly limited by the small data sets. Further-

more, only VF signals and no other shockable signals were

used. To investigate the feasibility of rhythm detection al-

gorithms during CPR also non-shockable signals should

be included, cf. [13]. The rSNR is a common parameter

to quantify the performance of a signal separation algo-

rithm. For the practical application of CPR removal algo-

rithms in defibrillators, however, other objective functions

such as the performance of a rhythm detection algorithm

or ∆(MF) could be more reasonable.
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