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Abstract
In a substantial number of patients atrial �brillation(AF) recurs after successful electrical cardioversion, butat present there are no reliable clinical markers for con-�dently identifying the patients in which recurrence willoccur within a short period of time. This study evaluatesthe predictive classi�cation performance of some DiscreteWavelet Transform (DWT) indices in distinguishing recur-rent and non-recurrent AF episodes. A validated databaseof 33 ECG recordings acquired from AF subjects undergo-ing cardioversion was used throughout the study, togetherwith their known recurrence status at one month. The DWTwas applied to these ECG recordings. Several parameterswere extracted from the decomposition bands as potentialfeatures for predicting the recurrence of AF episodes. Theestimated classi�cation rate of the extracted features wasevaluated using linear discriminant analysis (LDA). For aseparate 11 registers training set and 22 registers testingset, the performance of the classi�er testing set gave anestimated accuracy of 82%. We conclude that features ex-tracted from sub-band decomposition of the ECG can pro-vide some indicator of the likelihood of AF recurrence.

1. Introduction
Atrial �brillation (AF) is the most common cardiacarrhythmia in the general population, with signi�cantlyhigher prevalence in the elderly (10% in people above 80years)[1, 2].The exact mechanisms that generate, perpetuate and ter-minate AF remain uncertain, and current preventative andcurative therapies are not fully satisfactory yet. One ofmost useful therapies is electrical cardioversion (ECV),where external shocks are given in an attempt to convertAF to normal sinus rhythm (NSR). ECV based therapiesare technically dif�cult and have some risk of complica-tions. such as thrombo-embolism. However, following

successful NSR restoration, the recurrence of AF afterECV is a major and largely unpredictable clinical prob-lem, since only around 25% [3, 4] of the patients remainin sinus rhythm at one year post-cardioversion, with theproportion rising to approximately half of patients if an-tiarrhythmic treatment is employed. As a consequence,reliable predictors for NSR maintenance after successfulECV are required in order to avoid unnecessary ECVs andto search for more appropriate therapeutic alternatives.The present study was conducted to analyze ECG sig-nals from patients with persistent AF in order to extract re-liable parameters to predict early AF recurrence after suc-cessful ECV. The technique used for ECG analysis wasbased on the wavelet transform (WT), which has been suc-cessfully employed to solve other ECG signal problems[5, 6, 7].An important feature of the WT is its ability to localizesimultaneously spectral and temporal information within asignal. In addition, the fact that the WT exhibits differ-ent window sizes depending on the frequency band, leadsto a distinctive time-frequency resolution, with good fre-quency resolution at low frequencies, and good temporalresolution at high frequencies. The characterization of theWT coef�cients at various subbands, (e.g., using SampleEntropy) has allowed us to extract a regularity measureat various frequency bands, which combined with otherparameters and with appropriate statistical analysis toolsprovides a promising methodology for predicting the riskof AF recurrence after successful ECV.
2. Materials and methods
2.1. Materials
This study was carried out on a database of standard 12-lead ECG recordings obtained from 33 patients diagnosedwith persistent AF. These recordings were obtained in theElectrophysiological Laboratory, Hospital Cl�́nico Univer-
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sitario de Valencia, during the ECV protocol. The signalsprovided a view of the ECGwhile in AF prior to cardiover-sion. All these signals were digitized at a sampling rate of1KHz and 16-bit resolution. In order to process these sig-nals, a 1 minute-length AF segment preceding the ECVprocedure was extracted for each patient.All patients with AF were monitored 4 weeks after car-dioversion, and it was found that 14 out of 33 patients(42.4%) remained in NSR, whereas the rest of the patientsreverted to AF.
2.2. Wavelet transform analysis
The ECG can be considered as a superposition of signalsoccurring at different frequencies and times. One purposeof wavelet analysis is to separate and sort these underlyingstructures into different time scales (frequency bands).Wavelet analysis is the decomposition of a signal x(t)into shifted and scaled versions of a reference wavelet. Thereference function is called the mother wavelet (t), whichis appropriately dilated with a factor a and shifted a certaintime interval b (1). In the Continuous Wavelet Transform(CWT) the wavelet coef�cients C(a; b) are de�ned as theconvolution of the signal with the mother wavelet:

 a;b(t) = a� 12 ( t� ba ) 8a; b 2 <+ (1)
C(a; b) = ZR x(t) a;b(t)dt (2)

The Discrete-Time Wavelet Transform (DWT), accord-ing to Mallat's algorithm [8], is a sampled version of theCWT in a dyadic grid, where the wavelet coef�cients arecomputed for discrete values of scale and translation fac-tors, and the increments are in the dyadic scale.In the so-called multiresolution algorithm (MRA), theoriginal signal passes through two complementary digital�lters and two downsamplers. The �rst one is a high-pass �lter, which is characterized by the discrete motherwavelet g[n] (3), whereas the second one is a low-pass �l-ter, characterized by its mirror version h[n] (4). The down-sampled outputs of high-pass and low-pass �lters providethe detail, and the approximation, respectively. The ap-proximation is further decomposed into new detail and ap-proximation coef�cients, respectively. This process is re-peated until all wavelet coef�cients are determined. (Thewavelet coef�cients are the outputs observable from thedetail/high pass branches of the decomposition). In thisway, the DWT can be used to map a set of N raw signalsamples to a new set ofN wavelet coef�cients, which rep-resent the signal at various time scales/frequency bands.
yhigh[k] =Xx[n]g[2k � n] (3)
ylow[k] =Xx[n]h[2k � n] (4)

2.3. Sample entropy
Entropy measures can be used to quantify the regularity(predictability) of time series. Algorithms developed forthis purpose have potential applications in the analysis andunderstanding of complex physiological time sereis suchas the ECG.In this study, we have used sample entropy (SampEn)[9] as a useful measure of regularity. This is a similar, butless biased, measure than the approximate entropy (ApEn)family of parameters [10] introduced by Pincus to quantifythe regularity of �nite length time series.The Sample Entropy can be calculated as follows. Con-sider the distance between two vectors as the maximumof the absolute differences between their components and�x a threshold value r for determining when these vec-tors are close to each other, ApEn re�ects the likelihoodthat sequences that are close to each other, i.e., withinr, for m consecutive data points remain close when onemore data point is known. Mathematically, ApEn is com-puted as follows: Let Xi = x1; : : : ;xi; : : : ;xN repre-sent a time series of length N. Consider the m-lengthvectors: um(i) = xi;xi+1; : : : ;xi+m�1. Let nim(r)represent the number of vectors um(j) within r of um(i).Cmi (r) = nim(r) = (N � m + 1) is the probabili-ty that any vector um(j) is within r of um(i). De�ne,�m(r) = 1=(N�m+1)PN�m+1i=1 lnCmi (r). ApEn is de-�ned as ApEn(m; r) = limN!1 �m(r)� �m+1(r). For�niteN , it is estimated by the statistic, ApEn(m; r;N) =�m(r)� �m+1(r).SampEn has the advantage of being less dependent onthe time series length, showing relative consistency overa broader range of possible r ,m, and N values. Startingfrom the de�nition of the entropy, it is de�ned:

SampEn(m; r;N) = �lnUm+1(r)Um(r)
The differences between Um+1(r) and Cm+1(r),Um(r) and Cm(r) are the de�nition of the distance be-tween two vectors as the maximum absolute differencebetween their components, the exclusion of self-matches,given a time series withN data points, only the �rstN�mvectors of length m, um(i), are considered, ensuring that,for 1 � i � llN �m, the vector um+1(i) of lengthm+ 1is also de�ned.SampEn is precisely equal to the negative of the natu-ral logarithm of the conditional probability that sequencesclose to each other form consecutive data points will alsobe close to each other when one more point is added toeach sequence.Larger SampEn values indicate greater independence,less predictability, hence greater complexity in the data.This, in turn, may imply that decreased complexity or
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greater regularity in the time series is not associated withdisease.For the study discussed in this paper, SampEn is esti-mated using the widely established parameter values ofm = 2, and r = 0:25%, where � represents the stan-dard deviation of the original data sequence, as suggestedby Pincus [10].
2.4. ECG signal analysis
The predictive capability of DWT coef�cients to assessNSR maintenance after successful ECV was investigated.A biorthogonal family was applied to lead V1, which isthe lead which typically shows the highest amplitude ofthe atrial �brillatory signal, due to orthogonality proper-ties, and a very high time resolution [8, 11].The number of decomposition levels was chosen so thatthe DWT coef�cients at each scale describe representa-tive information of the atrial frequencies [11, 12]. In thepresent study, the number of decomposition levels waschosen to be 8. Therefore, the computed detail waveletcoef�cients of the ECG signals were used as the featurevectors representing the signals at these 8 different sub-bands.We can also apply spectral analysis to each sub-band de-composition. Frequency domain analysis consisted of ob-taining the modi�ed periodogram using the Welch-WOSAmethod [12] with a Hamming window of 4096 pointslength, an overlapping of 50% and 8192-point Fast FourierTransform (FFT).After observing the coef�cients in both domains, the fol-lowing parameters were considered:� Average energy of the wavelet coef�cients in each sub-band (E)� Main peak frequency in each subband (F)� Amplitude of the main peak frequency in each subband(A)� Sample entropy in each subband (SE)Several different combinations of features were used inthe classi�er in order to determine the utility of differentfeature subsets. Receiver Operating Characteristic (ROC)analysis was performed on individual features to quantifythe ability of each feature to discriminate between recur-rent and non-recurrent AF. The area under an ROC curveis equivalent to the Mann Whitney version of the two sam-ple nonparametric Wilcoxon rank-sum statistic [13].Linear discriminant analysis (LDA) was employed inthis study as a classi�er. (Other classi�er models mayprovide better or worse performance, but typically anLDA classi�er represents a robust �rst-order classi�er ap-proach). An LDA �nds the linear combination of featuresthat best discriminates among groups. Under certain as-sumptions, this method maximizes the ratio of between-class variance to the within-class variance in any particu-

lar data set thereby guaranteeing maximal separability. Inan initial con�guration, the classi�er model was applied toall the data (i.e., the full set of 33 records was used as thetraining set).Since classi�er performance using trainig data only willbe optimistically biased, a more realistic estimate of clas-si�er perofrmance can be obtained using techniques suchas cross fold validation. In this case, we used leave-one-out validation in which the classi�er model was trained on(m � 1) of the m ECG records and using the mth recordto test the classi�er performance.
3. Results
A statistical analysis to discriminate early AF recurrencefrom NSR maintenance after successful ECV was carriedout.The DWT was applied to the ECG from both groupsusing wavelets from a biorthogonal family, and the param-eters described in previous section were extracted in orderto proceed with the statistical analysis of the data.The most signi�cant results were obtained with the'bior3.9' and 'bior3.1' wavelets. The energy (Ei), the Sam-pEn (SEi) of the detail coef�cients at different scales wereevaluated, and the main peak frequency (Fi) and amplitudeof the main peak frequency (Ai) at each scale were alsocalculated. As can be observed in Tables 1 and 2, severalparameters provided statistically signi�cant differences be-tween the two groups. These tables also give the ROC val-ues for a single-feature classi�er based on that feature. Thebest-performing features are achieved with scale #7 of the'bior3.1'and 'bior3.9' wavelets.

Table 1. Area under the ROC curves and the Wilcoxonrank-sum p-value obtained from DWT Bior3.1 analysis.
Parameters Area PBior3.1 Energy cd7 (E7) 0.761 0.010Bior3.1 SampEn cd6 (SE6) 0.703 0.050Bior3.1 SampEn cd7 (SE7) 0.707 0.046Bior3.1 Amplitude cd7 (A7) 0.748 0.016

Multi-feature classi�cation was evaluated using lineardiscriminant analysis (LDA). The stepwise procedure wasused for feature selection. It starts with the best univari-ate parameter and looks only for these variables which im-prove classi�cation in the training set. The procedure canalso include a step to exclude previously included features,but this was not effective in our case.A high-performing feature set was the linear combina-tion of the parameters 'F7', 'E4', 'SE7', drawn from thebior3.9 analysis. Table 3 shows the the mean value andstandard deviation of these variables for the two groups.
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Table 2. Area under the ROC curves and the Wilcoxonrank-sum p-value obtained from DWT Bior3.9 analysis.
Parameters Area PBior3.9 Energy cd3 (E3) 0.759 0.011Bior3.9 Energy cd4 (E4) 0.756 0.012Bior3.9 SampEn cd6 (SE6) 0.703 0.050Bior3.9 SampEn cd7 (SE7) 0.703 0.050Bior3.9 Amplitude cd7 (A7) 0.752 0.014Bior3.9 Frequency cd7 (F7) 0.703 0.050

Using this feature set on a separately training set of 11 sub-jects resulted in 81.8% (9/11) accuracy, with 80.0% sensi-tivity and 83.3% speci�city. The performance of the clas-si�er testing set obtained using the rest of the subjects, wasan accuracy of 81.8% (18/22), with 85.7% sensitivity and75.0% speci�city.
Table 3. Parameters included in LDA.

Parameters NSR Recurrent AF PE4 0:12� 0:10 0:05� 0:02 0.012SE7 0:09� 0:06 0:05� 0:04 0.050F7 5:70� 0:69 6:12� 0:61 0.050
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Figure 1. ROC Predictive Group LDA

4. Discussion and conclusions
In this study, the problem of selecting parameter setswhich best characterize AF recurrence was investigated.Parameters extracted from surface ECG after wavelet pro-cessing were validated and shown to be statistically signif-icant in their prediction of AF recurrence after a successfulcardioversion. For the classi�cation task a small manage-able parameter subset was selected from the DWT decom-position. We showed that there is a potential for improving

the performance of a classi�er, by combining several indi-vidual parameters and classifying them by LDA.These results suggest that the ECG signals contain in-formation which provides clues as to the potential reoc-currence of AF. For example, the Sample Entropy is lowerat certain time-scales in the recurrent AF cases. However,given the small sample size set, these initial results are onlysuggestive of a potentially useful clinical tool, with the re-quirement of collecting a signi�cantly larger data set ofECV subjects in order to validate these initial �ndings.
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