Assessment of Baroreflex Sensitivity by the Closed-Loop Blood Pressure to Interbeat Interval Transfer Function

H VanDeVooren, CA Swenne, BJ TenVoorde, EE VanDerWall
Leiden University Medical Center, Leiden
ICaRVU, Vrije Universiteit, Amsterdam, The Netherlands

Abstract
Noninvasive baroreflex sensitivity (BRS) measurements in humans — by computation of the transfer function from systolic blood pressure to interbeat interval — are basically assessments, because they are made under closed-loop blood pressure control. Our study aims to compare such closed-loop BRS assessments with true open-loop BRS values by means of a simulation model of the human blood pressure control system. Simulations were done with the TenVoorde model, modified by removing respiration and by adding a pressure probe, adjustable autonomic and hemodynamic conditions, and a switch to open/close the loop. True, open-loop BRS values ranged from 1 to 23 ms/mmHg. Closed-loop BRS assessments differed between -5 to +4.0% from the open-loop values. Our results demonstrate that, under physiological and pathological conditions, noninvasive closed-loop BRS measurements assess true open-loop BRS with virtually no bias.

1. Introduction
Noninvasive baroreflex sensitivity (BRS, the reflex-induced increase in the interval between heartbeats per mmHg arterial blood pressure rise) assessment relies on the spontaneous fluctuations in blood pressure and heart rate. By using spectral analysis, i.e., computation of the systolic blood pressure to interbeat interval transfer function, the confounding influence of respiration can effectively be removed by applying high frequency, 0.25 Hz, respiration, and the frequency band of interest, namely, the low-frequency band (LF, 0.05-0.15 Hz). In the LF band both the orthosympathetic and the parasympathetic limbs of the baroreflex to the heart are operational [1]. BRS is expressed as one number, representing the averaged modulus of the transfer function in this band. [2]

Whether or not the modulus of the blood-pressure-to-interbeat-interval transfer function really represents baroreflex vigor is not obvious. Baroreflex induced changes in heart rate, cardiac contractility and peripheral vasodilation are fed back to the baroreceptors in the form of blood pressure changes. Hence, all clinical measurements are made in a closed-loop control system. If the open-loop transfer function is thought to represent the true BRS, the closed-loop transfer function can at best be regarded as an estimator of BRS. Clinical applicability of noninvasive BRS assessment depends on the error thus made.

To our knowledge, only two groups have investigated this topic [3,4], with different results. Our study aims to contribute to this unresolved issue by means of simulations with a mathematical model, in open-loop and closed-loop conditions, for low and high baroreflex gains and for physiological and pathological hemodynamic and autonomic conditions.

2. Methods
For our study we elaborated a simulation model on the basis of the TenVoorde model as recently published by TenVoorde and Kingma [5]. The here used model is outlined in Figure 1, and will henceforth be called the "modified TenVoorde model". Like the original model, the modified TenVoorde model of the human cardiovascular control system consists of a beat-to-beat hemodynamic part — Starling heart, Windkessel — and a continuous neural control part with different dynamics for the sympathetic and vagal branches.

At the baroreceptors, the systolic blood pressure (SBP) is compared with a reference value. This results in an error signal. In the model, this signal — denoted as "Effective SBP" — is a pressure signal, but it actually represents the afferent neural traffic that provides the autonomic nervous system with blood pressure information.

After some delay, the autonomic nervous system reacts with modulating autonomic signals that are proportional to the incoming effective SBP. These autonomic signals are added to the sympathetic and vagal tones. The resulting autonomic outflow is fed to the sinus node (where the interbeat interval IB is generated), and to the
peripheral resistance. The Starling heart fills throughout
the interbeat interval: a larger IBI value causes a larger
stroke volume. Stroke volume determines the Starling
heart’s pulse pressure.

Diastolic blood pressure is controlled by the
Windkessel time constant τ (under influence of the
dynamically changing peripheral resistance), by IBI, and
by the pulse pressure. Finally, the systolic blood pressure
(SBP) is computed by adding the diastolic blood pressure
and the pulse pressure. For a complete description of
TenVoorde model, we refer to [5].

We removed some complexity of the original
TenVoorde model: respiration (irrelevant when in clinical
practice high frequency metronome respiration is
applied), the contractility branch and the orthosympathetic
influence on venous return (marginal effects on variability in
stroke volume). A pressure probe signal at the baroreceptors
was substituted for the noise source. This sinusoid signal
with a 1 mmHg amplitude
that is superimposed on SBP allows for generation of IBI
and SBP variability at different frequencies, the quotient
of which constitutes the transfer function [6].

To simulate different physiological and pathological
conditions, we placed baroreflex gains (V, S and S'), and
autonomic tones (N, M, M') were made explicit and
adjustable. By replacing the constant blood pressure set
point by a low-pass filtered value of SBP, we achieved
that different settings of the sympathovagal balance result
in different average heart rate and systolic blood pressure
values. This baroreceptor resetting mechanism greatly
increases the dynamics of the model.

Finally, a switch was incorporated, to open or close the
feedback loop. In the open loop state the pressure probe
fluctuations constitute the sole input for the arterial
baroreflex arc. This switch thus facilitates the open- and
closed-loop simulations needed for the computation of the
SBP-to-IBI gain for the feed-back branch alone, and
for the (real-life) intact situation, respectively.

The three autonomic tone parameters M, N, M' and
cardiac stroke volume Vref, were set as two fixed
combinations to represent either normal, physiological or
abnormal, pathological resting conditions. (see Table 1).
The pathological parameter settings assumably represent
a serious condition that resembles congestive heart
failure, as the parameter values yield a heart rate of 90
bpm (instead of 60 bpm for the normal parameter
settings) and also yield a decreased stroke volume. The
three baroreflex gains S, S', and V were set at nine
different combinations (see Table 1).

For the so defined eighteen combinations, both the open-
and closed-loop transfer functions were computed.
For each transfer function 100 simulations of 500 s
duration were run, at pressure probe frequencies of 0.003-
0.3 Hz, step 0.003 Hz.

3. Results

As opposed to open-loop conditions, closed-loop
simulations have reduced SBP and IBI fluctuations for the
lowest (<0.05 Hz) frequencies, while there is
resonance with higher amplitudes in the LF band.

Figure 2 depicts the results for three situations (i.e.,
normal baroreflex, strong baroreflex, and sympathetic
predominance to the peripheral resistance), under
physiological and pathological conditions. A high gain to
the periphery is a prerequisite for strong resonance (Fig.
2, panels B1, C1, B2, C2). SBP variability is not sensitive
to the gains to the heart (Fig. 2, panels B1 and C1), while
IBI variability increases over the whole frequency band
with higher baroreflex gain to the heart (Fig. 2, panels B2
and C2). Closed-loop transfer functions are larger than the
open-loop transfer functions in the lowest
frequencies, and cross the open-loop transfer functions
near the resonance frequency (Fig. 2, panels A3, B3 and
C3).

Table 1 shows the closed-loop (assessed) and open-
loop (true) BRS values and the errors for all simulated
combinations. The closed-loop BRS assessment is almost
equal to the true BRS: the largest difference was 5.2%
underestimation. The averaged absolute error is larger
(the maximal error was 13.1%). Obviously, the larger
absolute errors are not specifically associated with larger
BRS over- or underestimations.
Figure 2. Results for normal baroreflex (panels A1-A3), strong baroreflex (panels B1-B3) and sympathetic predominance to the peripheral resistance (panels C1-C3). Thick black lines: physiological conditions, open loop. Thick grey lines: pathological conditions, open loop. Thin lines are the closed loop variants. When thin lines are not visible, they are close to the thick curves. Note: Due to the properties of the simulation model open-loop SBP variability has ever a 1 mmHg amplitude (panels A1, B1 and C1).

4. Discussion

It appears that closed-loop BRS assessment is quite accurate. It’s obvious that the resonance phenomenon in the LF band, generally known as Mayer waves [7], is strongly under influence of the baroreflex. The only situation in which Mayer waves hardly appear is when the orthosympathetic baroreflex gain to the peripheral resistance is small.

We have no explanation for the striking fact that the closed-loop transfer function overestimates the open-loop transfer function below the resonance frequency, and underestimates it above this frequency. Because of this systematic effect, the spectral errors made during closed-loop BRS assessment cancel out, and the resulting error in BRS is very low.

Barbieri and colleagues [3] reported much larger differences between the closed-loop and open-loop values than we have found. Admittedly, their model-based analysis was applied on human real-life data. However, this implied the need for a parameter identification procedure that may lead to errors; also, in the low frequencies the authors report problems of low-coherence.

Kawada and colleagues [4] were able to measure open-loop transfer functions in rabbits, and found little difference with closed-loop transfer functions. This parallels our results, but it has to be taken into account that the animals were surgically prepared, heavily instrumented and artificially ventilated, and under anaesthesia. Such conditioning is known to influence the state of the autonomic nervous system, which limits the value of this type of studies.

In conclusion, our study demonstrates that, under all investigated conditions, closed-loop BRS assessment by computation of the SBP to IBI transfer function leads to results with nearly no bias. In clinical practice this BRS assessment method is to be preferred because the measurements are noninvasive and cause no burden to the patient. In our opinion, the major problem in noninvasive BRS assessment is a low signal-to-noise-ratio (that becomes apparent in the form of low coherence in cross-spectral transfer function assessment [8]) rather than bias caused by the open-loop-closed-loop issue.
<table>
<thead>
<tr>
<th>Baroreflex gains</th>
<th>Physiologic Conditions: M = 1.2, N = 0.5, M* = 1.2, Vref = 80 ml</th>
<th>Pathologic Conditions: M = 1.5, N = 0.6, M* = 1.25, Vref = 60 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assessed BRS [mmHg]</td>
<td>True BRS [mmHg]</td>
</tr>
<tr>
<td>partial β-adrenergic blockade:</td>
<td>0.33</td>
<td>1.0</td>
</tr>
<tr>
<td>partial cholinergic blockade</td>
<td>1.0</td>
<td>0.33</td>
</tr>
<tr>
<td>partial α-adrenergic blockade:</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>weak baroreflex:</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>normal baroreflex:</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>strong baroreflex:</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>cardiac sympathetic predominance:</td>
<td>3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>cardiac para-symp. predominance:</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>symp. predominance to the n. resist.</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 1. Assessed (closed loop) and true (open loop) BRS values for all simulated combinations of baroreflex gains under physiologic or pathologic conditions. Absolute error: averaged percentual absolute differences between the frequency-components of the closed- and open-loop transfer functions in the LF band; BRS = baroreflex sensitivity; BRS error: percentual difference between the means of the closed- and open-loop transfer functions, averaged over the LF band; M = sympathetic tone (heart); M* = sympathetic tone (peripheral resistance); N = vagal tone; S = sympathetic gain (heart); S' = sympathetic gain (peripheral resistance); V = parasympathetic gain; Vref = stroke volume at 1 s filling time.

References


Address for correspondence.
Cees A. Swenne, PhD
Cardiology Department, Leiden University Medical Center
PO BOX 9600, 2300 RC Leiden, The Netherlands
Phone: +31-71-526-1972
Fax: +31-71-526-6809
E-mail: c.a.swenne@lumc.nl

492